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Physical & Interfacial 
Electrochemistry 2013

Lecture 2.
Electrolyte Solutions : 

Ion/solvent interactions: ionic 
solvation.

Module  JS CH3304 MolecularThermodynamics and Kinetics

Ionics: the physical chemistry
of ionic solutions.

In previous lecture courses at the
Freshman level we presented a
rather general introduction to
electrochemical systems and
concepts. In this lecture course we
begin the study of physical
electrochemistry in earnest and set
the ball rolling by discussing Ionics,
the physical chemistry of
electrolyte solutions.

We recall that electrolyte
solutions are solutions which can
conduct electricity. We recall
from basic general chemistry that
in solutions solutes can exist in a
number of possible forms:
Molecular units: solution is non-
conducting, normal colligative
properties exhibited, XRD
analysis indicates discrete
molecular units in the solid.
Molecular units plus ions: solution 
is weakly conducting, colligative
properties indicate slightly more 
than expected numbers of 
particles present, XRD analysis 
indicates discrete molecular units 
in the solid.
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We now begin the study of
physical electrochemistry in
earnest and consider the
solvation of ions in electrolytic
solutions . In particular in this
lecture we shall focus on ion -
solvent interactions , and
discuss the progress that has
been made in the understanding
of the nature and structure of
solvated ions . Our main
emphasis will be on aqueous
solutions .

The term electrolyte is of particular importance
here. Now electrolytes may be defined as a class of
compounds , which, upon dissolution in a polar solvent
, dissociate at least partially into ions . If we zero in
on the concept of dissociation , or the splitting
apart to form ions , and concentrate on the extent
to which dissociation takes place, then we can
distinguish between two types of electrolytes .
These two designations are termed true and
potential . A true electrolyte implies complete
dissociation into ions, whereas for a potential
electrolyte only limited dissociation takes place .
Thus sodium chloride NaCl is a true electrolyte
whereas acetic acid CH3COOH is a potential
electrolyte . These statements are well known from
basic freshman chemistry. The mechanism of ion
formation is different for both of these electrolyte
types.
A slightly older designation which is still in current

use are the terms strong and weak electrolytes .
Note that solutes giving in solution molecular units
are termed non-electrolytes, those generating both
molecular units plus ions, weak electrolytes and
those forming ions only, strong electrolytes.

In recent years many advances have 
been made both in experimental 
techniques (spectroscopic and 
diffraction methods) and in 
computational simulation protocols 
(such as molecular dynamics MD, 
especially as applied to biologically 
important molecules) which may be 
used as tools for the study of ionic 
solvation processes  . 

NaCl is an ionic compound consisting of Na+

and Cl- ions joined together via electrovalent 
bonds in a crystal lattice . When solid NaCl is 
put in contact with a solvent such as water , 
the solvent molecules rapidly attack the 
lattice , disrupt and break the ionic bonds and 
thereby generate hydrated ions Na+(aq) and 
Cl-(aq) as outlined schematically below. Here 
we see ion/solvent interactions very much at 
work. 

Dissolution of crystal
by action of solvent.

Significant (complete)
Dissociation/ionization.
Ion/solvent interaction
Strong.
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A different situation pertains for
acetic acid. The latter is a neutral
organic compound. In this case a
specific reaction between the solute
and solvent, a proton transfer
reaction, results in the generation
of acetate CH3CO2

- and hydronium
ions H3O+ ions. A proton is
transferred from the organic acid (a
proton donor) to a water molecule (a
proton acceptor) outlined below. We
have a Bronsted-Lowry acid/base
reaction . Now the latter process
only proceeds to a limited extent .
Typically the degree of dissociation
is ca. 10-3 . Chemical method: proton transfer reaction.

Degree of dissociation
small, 0.1 %.

Weak acid
KA small.

2 3 ( )HA H O H O aq A  

Refer to Bronsted-Lowry Acid/Base
Behaviour discussed in JF CH1101.
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The structure of water , the 
ubiquitous medium .

Water is of course the most 
generally used solvent system in 
electrochemistry . However for 
some applications non aqueous 
solvents must be used (e.g. in high 
density lithium battery systems). 
As a general rule , an 
electrochemically useful solvent 
must be able to dissolve a 
reasonable amount of an inorganic 
electrolyte (ca.  at least  10-3 mol 
dm-3) .

We see that when compared with other 
solvents, liquid water exhibits several 
distinctive properties . For instance , water 
has a high relative permittivity (er = 78) , high 
surface tension (72 mN m-1), high thermal 
capacity (75 J mol-1K-1) and thermal 
conductivity (0.6 J s-1m-1K-1).  Also , its molar 
volume is the smallest of all the common 
solvents and so it will exhibit the highest 
particle density . A further point to note is 
that the enthalpy of vaporization is greater 
that the enthalpy of fusion in contrast to the 
situation observed for non polar solvents 
where the latter quantities are of similar 
magnitudes . The surface tension of water is 
also considerably larger than other solvents. 
The same can be said for the molar heat 
capacity . Finally , considering  the magnitude 
of the molar mass of water , we note that its 
viscosity is anomalously high.  Hence these 
bulk properties of liquid water suggest that 
the latter  must be quite highly ordered and 
that considerable molecular association  is 
present . Furthermore we can conclude that 
intermolecular attractive interactions are 
stronger in liquid water than in other solvents 
. 

Bockris & Reddy, Modern 
Electrochemistry
2nd edition, Kluwer, New York, 1998, 
Vol.1 Ionics, Ch.2.
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The structure of water and ice
depend on the geometry exhibited
by a single water molecule .
Molecular structure determines
macroscopic properties . We know
from Freshman Chemistry that a
single H2O molecule has eight
valence electrons (six from oxygen
and one each from the two hydrogen
atoms). The demands of individual
atomic valencies dictate that the
oxygen atom is covalently bonded to
each of the hydrogen atoms and
that two lone pairs of electrons
reside on the oxygen atom . Hence in
the language of quantum mechanics ,
the oxygen atom is sp3 hybridised .
Water exhibits a tetrahedral
stereochemistry . The HOH bond
angle is 104.5 o . The molecule acts
as a dipole and the lp electrons may
enter into hydrogen bonding with
hydrogens on neighboring water
molecules . In this way a three
dimensional network structure may
be generated .

Methods of structural analysis such as
XRD, ND, NMR, IR and Raman
spectroscopy applied to liquid water
have indicated that under normal
conditions ca. 70% of water molecules
exist in "ice floes" (clusters of ca. 50
molecules exhibiting a structure similar
to that of ice) . The mean lifetime of
such networked structures is ca. 10-11 s
.

And what of the structure of ice ? 
The best experimental evidence 
suggests that the latter material 
consists of a network of open 
puckered hexagonal rings joining 
oxygen atoms together . Each oxygen 
atom is tetrahedrally surrounded by 
four other oxygen atoms . Also, in 
between any two oxygen atoms is 
located a hydrogen atom which is 
associated to the adjacent oxygen 
atoms via hydrogen bonding .  Hence 
each oxygen atom has two hydrogen 
atoms near it at an estimated distance 
of ca. 0.175 nm . Now such a network 
structure of associated water 
molecules contains interstitial regions 
located between the tetrahedra , 
which typically are larger than the 
dimension of a water molecule . Hence 
it appears that a free non-associated 
water molecule can enter the 
interstitial regions without generating 
any disruption of the network 
structure .
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We can therefore say that liquid water
under most conditions is described in terms
of a somewhat broken down, slightly
expanded form of the ice lattice . In short,
liquid water partly retains the tetrahedral
bonding and resultant network structure
characteristic of the crystalline structure
of ice . Hence by analogy with the ice
structure one has associated network water
and structurally free non associated water
located in the interstitial regions in the
network .
Note that the mean oxygen-oxygen bond 
distance in ice is 0.276 nm whereas in liquid 
water it is 0.292 nm . Furthermore, the 
number of oxygen nearest neighbours in ice 
is 4 and in water is between 4.4 and 4.6 .

It is important to note that this distinction 
between network and free water is not a 
static one . Networks can break down : 
more free water molecules can be formed . 
Free water molecules may combine to form 
clusters ( typically ca. 50 water molecules 
joined together) . The situation is 
therefore quite dynamic . Free water can be 
transformed into network water and vice 
versa . This picture (icelike labile clusters  
and monomeric water molecules) was 
initially proposed some time ago by Frank 
and Wen . 

One expects that solvents such as
MeOH and formic acid should also
exhibit considerable association via
hydrogen bonding and that a certain
degree of order should be present .
However as noted by Desnoyers and
Jolicoeur 2 the details of solvent-
solvent interactions in polar liquids is
generally unknown at the present
time , water being the only exception
. Solvent-solvent interactions can
and do play an important part in ionic
solvation . However their effect is
very difficult to establish in non-
aqueous solutions . In this course we
will concentrate mainly on water ,
since the latter has been well
characterised experimentally and is
best understood .
Solvent / solvent interactions can

involve dipole / dipole , dipole /
induced dipole , induced dipole /
induced dipole (dispersion) and
dipole/ quadrupole interactions .

How many water molecules must be joined together
before the bulk properties of water are observed ?
Put another way , we ask how many water molecules
does it take before the cluster shows the
properties of wetness or before the dielectric
properties approach that of bulk water ? This is not
a philosophical question : the answer leads one to
the forefront of research . A single water molecule
will not suffice : this much we know . A recent
textoook author has quoted a value of ca. 6
molecules . This is clearly far too low .

Simonson has recently calculated using
Molecular Dynamics (MD) techniques a value for the
static dielectric constant of water using a simple
model system consisting of a microscopic droplet of
water in a vacuum . The idea behind this approach is
as follows .

Almost all computational studies to date 
have been based on simulations of bulk water either 
using so called periodic boundary conditions (more 
about these later on) or by combining a finite 
spherical microscopic region with an outer bulk 
region modelled as a dielectric continuum.  Such 
computations are difficult, time consuming and 
hence very expensive to do . Lots of long range 
interactions have to be taken into account and this 
causes convergence problems when the computation 
is done . Optimal computational strategies are still 
being pursued . 
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On the other hand using a model
such as a spherical water droplet
imbedded in a vacuum , one can
dispense with long range
interactions and one can readily
compute all the interactions
within the droplet whose size can
be chosen . Simonson has shown
that very good agreement (er in
the range 77 - 87) with the
experimental bulk dielectric
constant of water is obtained for
a droplet of 1963 TIP3P water
molecules (sphere 2.4 nm radius)
at T = 292 K after a simulation
time of 1000 ps . Hence from this
work it is clear that a cluster of
some 2000 water molecules can
mimic the behavior of the bulk
liquid .

.

We now move on and consider some
simple approaches used for quantifying
what happens when an ion enters from
the gas phase into a polar solvent such as
water and becomes solvated (or
hydrated). In particular we shall consider
the energetics of the interaction
between an ion and the solvent .

We shall initially adopt a very
simple first order approach and assume
that the solvent medium does not have a
molecular structure , but instead can be
regarded as a dielectric continuum . In
this approach we assume that the
interactions between the ion and the
solvent are electrostatic in origin and we
view the ion as a charged sphere of
radius r and the solvent as a dielectric
continuum of dielectric constant er

The solvent is the medium in which the solute exists. It is often called
A dielectric. A dielectric can be thought of in terms of an insulator, which is
A substance which stops or tends to stop the flow of charge., in other 
words to stop a current passing through it.
If a substance which acts as an insulator is placed between two charges it
Reduces 

• the field strength
• the force acting between the charges
• the electrostatic potential energy of interaction between the charges

And the factor by which it reduces these quantities is called the 
relative permittivity r.
It is important to note that this definition of relative permittivity is 
independent of any assumption as to what the dielectric is made of. 
In particular it is independent of any assumption that the dielectric  is 
composed of atoms and molecules, and so requires no discussion of the 
medium at a microscopic level.
In effect the dielectric constant is just a proportionality constant 
characteristic of the medium.
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Solvation: Solute-solvent 
interactions.

Introduction.

We focus attention on charged
solutes (ions) in polar solvents.
Much work has been done in this
area of Physical Electrochemistry
both from a theoretical and an
experimental viewpoint. The topic is
also of considerable importance in
biophysical chemistry when the
solvation of macromolecular protein
molecules is addressed.
Firstly with respect to the
theoretical analysis we consider
two distinct approaches to
solute/solvent interactions.

Non-structural treatment.
This is based on viewing the
solvent as a structureless
dielectric continuum into which
the ion is embedded as a charged
sphere. The methodology of
classical electrostatics is used in
the detailed analysis of the
energetics of the problem.
The energetics of salvation is
expressed in terms of
thermodynamic cycles and the
pertinent thermodynamic
quantities such as GS, HS and
SS are determined in the
context of simple electrostatic
models.

The non-structural approach is
based on the original model
developed by Born (1920). This
type of analysis is very
approximate but is still being used
with some success.
Good agreement between theory
and experiment is obtained via the
introduction of empirical fitting
parameters which serve to
quantify the ionic radius in the
solvent.
The non-structural Born approach
has been generalised in recent
years to examine the salvation
energetics of macromolecules, and
is so a topic of considerable
current interest in biophysical
chemistry.

Structural treatment.
This defines the modern approach.
Here we view the solvent as a
molecular entity with a well defined
structure (as indeed it has). We need
a model of the solvent in the
immediate vicinity of the ion. Again
the solvation energetics are
quantified in terms of the
thermodynamic entities GS, HS and
SS. The theoretical analysis is again
based on electrostatic models but
these are more elaborate and include
ion/dipole and ion/quadrupole
interactions. The structural
treatments based on the early work
of Bernal and Fowler (1933). The
results obtained are encouraging but
a fully satisfactory theoretical model
has yet to be developed.
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In contrast the experimental
analysis of solvation is quite well
developed.
Structural information on the
environment of a solvated ion is
obtained from:
diffraction methods: X-ray,
neutron and electron diffraction,
EXAFS etc.
spectroscopic studies : uv/vis, ir, 
nmr, raman spectroscopies etc.
Diffraction methods provide direct
information about the environment
surrounding the ion in solution,
whereas indirect structural
information is provided from
spectroscopic methods.

One difficulty is that
dilute solutions need to be examined
in order to focus in on ion/solvent
interactions. If more concentrated
solutions are used then ion/ion
interactions come into play and cloud
the issue.



9

In this section we discuss an approach 
developed by Born  which can be used to 
model the energetics  of  ion/solvent 
interactions in a convenient manner . This 
approach may have its origins over sixty 
years ago and is certainly limited,  but it 
can , and has yielded a large number of 
qualitative and semi-quantitative insights 
. Now this approach is limited and has 
had its detractors . However this 
continuum approach represents a simple, 
easily interpretable, and computationally 
inexpensive physical model that does not 
involve many adjustable parameters . The 
major problem with this approach is that 
the concept of a macroscopic dielectric 
response is applied to a molecular 
system. 
Max Born was one of the founding 

fathers of modern quantum mechanics 
having proposed the probability 
interpretation of the wavefunction for 
which he ultimately obtained a belated 
Nobel Prize .

In the Born approach a blend of
classical electrostatics and
thermodynamic cycles is adopted . The
object of the exercise is to evaluate ,
from first principles, the Gibbs
energy change GS associated with
the process of ionic solvation , where
one considers the transfer of an ion
from a gaseous vapour at low partial
pressure to the desired solvent (i.e.
water) in the absence of any ion/ion
interactions . In simple terms the
work of transfer of an ion from
vacuum to a solvent is equated with
the Gibbs energy of solvation . Hence
the formidable task of quantifying the
energetics of ionic solvation in a
structured solvent is reduced using
this approximate approach to
answering the question : what is the
work done in transferring a charged
sphere from vacuum into a dielectric
continuum ?

Energetics of ionic solvation : Non-structural Treatment.
Born Model (1920)

We consider the following situation. 
Initial state: no ion/solvent interactions. 
This corresponds to ion in vacuum.
Final State: ion/solvent interactions operative.
This corresponds to ion in solution.
Thermodynamics states that for reversible
Process taking place at const. T & P, 
Free Energy change G equals net work 
(other than PV work) done on system.
We need to calculate the work done in
Transferring an ion from vacuum into a solvent.

Vacuum

Solvent

Free energy change
GS

Ion

A solvent such as water has a complex structure.
To simplify our analysis we dispense with structure 
and regard the solvent as a structurless dielectric 
continuum. This medium has a dielectric constant 
given by S The ion also has structure (ion + 
associated hydration sheath). We represent the ion 
as a charged sphere of net charge qi = zie and radius 
ri.

Charged 
sphere

nucleus

Electron
cloud

i iq z e

ir
irNet charge

Structured solvent Structurless
Dielectric
continuum

Dielectric constant S

Gibbs energy of solvation computed via
a thermodynamic cycle.
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Born Model : Thermodynamic cycle to calculate the work done 
in transferring a charged sphere from vacuum into the solvent.

Main assumption:
Only charge on ion is
Responsible for ion/solvent
interaction.
Hence ion/solvent
interactions are solely
electrostatic in nature.

Remove charge

Charging process

SG

Work of discharging

Work of charging

Charged sphere 
in vacuum

Uncharged sphere 
in vacuum

Uncharged sphere 
in solvent

Charged sphere 
in solvent

Zero electrostatic work of transfer

Solvent

Vacuum

WD

WC

WT = 0

The following thermodynamic cycle is
developed. The ion i , represented as a
charged sphere of radius R,is
considered in to be initially located in a
vacuum, and the work Wd required to
strip the ion of its charge q = zie is
determined . Then this uncharged
sphere is transferred into the solvent
dielectric medium . We assume that
this transfer process involves no work .
Then the charge on the sphere inside
the solvent is restored to its full value
q = zie and the work done in charging
Wc is determined . Finally, the ion is
transferred from the solvent back into
vacuum . The work done in this
transfer process is - Gs .

dcs

sctrd

WWG

GWWW


 0

In a thermodynamic cycle the algebraic
Sum of all the work terms is zero.

We now evaluate the work done in charging a 
sphere of radius R from q = 0 to q = zie , 
where zi denotes the valence of ion i and e is 
the fundamental electronic charge .  To do 
this we start off with an uncharged sphere 
and add infinitesimal amounts dq to the sphere 
until the final charge level is attained .The 
product of electrostatic potential  and the 
charge increment dq gives the work increment 
dw.

dw dq

The total work done in charging the sphere 
is obtained by summing over all the little 
increments dw. 

 
ezez

c

ii

dqdwW
00



From fundamental electrostatics we recall 
that the electrostatic potential at a certain 
point in space is defined as the work done 
to transport a unit positive charge from 
infinity to that specific point . Now the 
electrostatic potential at a point located a 
distance r from a charged sphere  (r) is 
given by the product of the electric field 
strength E(r) (which defines the electric 
force per unit charge) acting on the moving 
test charge and the distance r through 
which the  charge is carried . 

   
R

q
dr

r

q
drrEr

RR

0
2

0 44

1


  



Direction of
Increasing
potential

Direction of 
Electric fieldDirection of 

transport 
of charge

Positively
Charged sphere Unit positive

Test charge

 

 










 

R

ez

dq
R

q
dqRrW

i

ezez

c

ii

24

1

4

1

2

0

000






0 = permittivity of vacuum = 8.854 x 10-12 C2N-1m-2

Total charging
work Wc
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Work done in discharging sphere
is negative of charging work, Wd = - Wc

 









R

ez
W i

d 24

1 2

0

The recharging work done when the 
sphere is present in the solvent 
dielectric is modified by the 
macroscopic dielectric constant of 
the medium r .

 









R

ez
W

r

i
c  24

1 2

0

 



















r

idiel
c

vac
ds R

ez
WWG


1

1
24

1 2

0

Born expression for Gibbs energy of 
Solvation.

 2 2

0 0

1 1
1 1

4 2 4 2
iA A

s
r r

z eN N q
G

R R   

                   
      

Molar Gibbs
Energy of
solvation

Note that in the expression for Gs there is a
negative sign heading the rhs . Now since the
dielectric constant r > 1 always and so 1/r < 1 then
Gs will always be negative . The solvation proceeds
spontaneously : ions prefer to be solvated than to be
in vacuum . Hence solvation is thermodynamically
favourable. The Born equation also predicts that the
smaller the ion (smaller R) and the larger the
dielectric constant , the greater will be the solvation
free energy .

TR

ezN

T

G
S r

r

iA

P

s
s 





2

22

0

1

24







 











T

T

R

ezN
H r

rr

iA
s 


 2

22

0

1
1

24

The Entropy and enthalpy of solvation are readily 
evaluated. Note that HS is a quantity readily 
compared with experiment.

sss STGH 

A clear prediction is that the
solvation free energy should
vary inversely with ion size R

We note that the Born model
makes predictions which
suggest that the ion solvent
interaction is much stronger
than it actually is . We readily
see this if we compare
experimentally determined Hs
values for the alkali metal ions
and the halide ions with that
evaluated via the Born
expression . If one plots Hs
versus the inverse of the
Pauling crystal radius we note
that the linear relationship
between Hs and 1/R predicted
by the Born expression is not
observed . The experimental
data points are all much lower
than the theoretical Born
equation line . In general the
use of ionic radii leads to an
overestimate of the solvation
energies of anions and in
particular the calculated
solvation energy of cations can
be almost 100 kcal mol-1
greater than experimental
values . In any event it is quite
remarkable that such a crude
electrostatic model works at
all ! In fact what is measured is
the enthalpy of solvation of a
salt not that of an individual
ion .

(R/)-1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

-
H

S

0

50

100

150

200

250

300

Born Theory
Born Theory
Regression  line
Experiment

Li+
Na+K+,F-

Rb+
Cs+

Cl-Br-
I-

Born Model : Comparing theory and Experiment

Born theory suggests that ion/solvent interactions are much stronger 
than experiment shows them to be.
Need to use effective dielectric constant of solvent region near ion 
rather than bulk value (ca. 80 for water).

P.W. Atkins, A.J. MacDermott, J. Chem. Ed.59 (1982) 359-360
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Continuum Solvation Models: Recent Developments.

Rashin & Honig Model : J. Phys. Chem., 89 (1985) 5588-5593.
In original Born model R was chosen as the ionic radius derived 
from crystallographic measurements. This leads to quite
considerable deviations between experiment and theory. Born 
Equation estimates (using crystallographic ion radii) of the 
enthalpy of solvation are considerably higher than values 
derived from experimental measurements. For example: 
Li+ :R = 0.60Å, HS,calc = - 277.7 kcal/mol, HS,expt = - 146.3 kcal/mol.
Na+: R = 0.95 Å. HS,calc = - 175.5 kcal/mol, HS,expt = - 118.9 
kcal/mol.

Rashin & Honig suggested that R should be replaced by the 
parameter RC termed the cavity radius. Transferring the uncharged 
ion intothe solvent produces a cavity. The size of this cavity should 
be used in calculations involving the Born equation. The cavity radius 
is defined as the distance from the nucleus at which the electron 
density of the surrounding medium becomes significant.

The cavity radius is a rather arbitary concept, but it has been
suggested that the covalent radii of cations and the ionic radii
of anions provide a useful first approximation to the cavity radius.

B. Honig, K. Sharp, A-S Yang, J. Phys. Chem., 97 (1993) 1101-1109

  








ric

iA
s R

ezN
G


1

1
24

22

0

Predicted and experimental Hs values are in 
good agreement, with the error typically being 
in the region of 7 % .

The agreement between theory and experiment
is quite good, the calculated values are
consistently larger than the experimental values
by some 10 - 15 kcal mol-1.

2 2

2
0

1
1

4 2
iA r

s
IC r r

z eN T
H

R T


   

 
     

 

Rashin & Honig Model : J. Phys. Chem., 
89 (1985) 5588-5593.



13

Bontha & Pintauro Model. J. Phys. Chem., 96 (1992) 7778-7782.
Bontha & Pintauro developed a modified
Born thermodynamic cycle . It was
presumed that the total free energy
change associated with the transfer of
an ion from vacuum to a polarizable
solvent was equal to the sum of the work
terms associated with the following
processes :
• discharge of the ion in vacuum (Wd) ,
• transfer of the neutral species from
vacuum into the solvert (Wtr) ,
• re-charging the species in the solvent
(Wc),
• restoring the solvent to its original
state (WR)
• transferring the charged ion back into
vacuum .

The WR term is an important addition to
the Born approach . During the
recharging of an ion in a polarizable
solvent it is to be expected that the
solvent dipoles are orientated in the
electric field generated by the ion . This
will result in a decrease in the potential
energy of the solvent . Hence, when the
Born cycle is completed an amount of
work WR must be added to the solvent in
order to restore the rotational and
translational motion of the solvent
molecules i.e. the aligned solvent dipoles
must undergo relaxation .

Discharge Process

Recharge process

SG

Discharge work

Work of charging

Charged sphere 
in vacuum

Uncharged sphere 
in vacuum

Uncharged sphere 
in solvent

Charged sphere 
in solvent

Solvent

Vacuum

WD

WC

WTTransfer Process

Transfer work

Dipole relaxation
process

Work to restore
Solvent to
Original state

WR

Work 
obtained
from solvent 
dipole
realignment

The net free energy of solvation Gs is given by

 s D T c RG W W W W     

WD= work done in discharging ion in 
vacuum
WT = work done in transferring neutral 
species to solvent
WC = work done in charging neutral 
species in solvent
WR = work done in restoring solvent to 
original state (relaxation of aligned 
solvent dipoles).
It was also assumed that the solvent
was a polarizable dielectric medium, 
which implies that the dielectric 
constant varies with electric field 
strength and that dielectric saturation 
effects must be considered.
Hence the dielectric constant near an 
ion will be much less than the dielectric 
constant of the bulk solvent

All four work terms can be calculated using 
Classical electrostatics.
Detailed analysis can show that
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The total Gibbs energy of solvation is
Outlined across.  

2

0
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E

s T r
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q
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a
 


      

In order to evaluate the double 
integral, the  interrelationship 
between the radially dependent 
electric field and solvent 
permittivity surrounding an ion 
must be determined over the 
entire ion charging process.
This is done by simultaneously 
solving the modified Laplace 
equation of the electrostatic 
potential in a polarizable
dielectric medium and the 
Booth equation which describes 
the variation in the solvent 
permittivity with electric field 
strength.
These equations (outlined 
across) are quite complicated 
and must be solved
numerically using a finite 
difference technique on a 
computer.
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optical refractive index of solvent

 = dipole moment of solvent molecule

k Boltzmann constant

r = radial co-ordinate measured from centre of ion
B
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= surface charge 
density C m-2

Boundary Conditions

Bontha & Pintauro Model. J. Phys. Chem., 96 (1992) 7778-7782.
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Firstly, the variation of local dielectric constant with distance for
various extents of surface charging in the range 40 to 100 % is
outlined. We note that the distance from the ion surface over
which dielectric saturation is observed gets larger the greater the
extent of surface charging. The computed variation in the dielectric
constant of water (at 298 K) as a function of radial distance from
the ion surface for two univalent ions with different radii (Li+ and
Cs+) and for cations of similar radius and different charge (Na+,
Ca2+ and Y3+) are presented. We also show the computed variation
expected using the one layer dielectric model of Abraham and Lizzi
in these figures . The Abraham-Lizzi model predicts that the
dielectric constant remains at its bulk value until a certain critical
distance. After that, the value drops to a very low level . Hence the
Abraham-Lizzi model does not differentiate between ions of
different charges and size . It does approximate well the computed
variation in dielectric constant with radial distance for univalent
ions of large radius , but only poorly approximates the variation
expected for small univalent and for all divalent and trivalent ions .

Bontha & Pintauro Model. J. Phys. Chem., 96 (1992) 7778-7782.
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In table above we show the computed and experimental ionic solvation
Gibbs energies calculated using the Bontha - Pintauro model for a range
of cations and anions in water at 298 K . Goldschmidt values of the ionic
radii were adopted in the calculation . Agreement between theory and
experiment is quite good .

The analysis can also be extended to non 
aqueous solvents . In table above we 
show some results for three solvents : 
methanol, 1,1-dichloroethane and 
acetonitrile . Again excellent agreement 
is obtained between theory and 
experiment . The model predictions are 
typically within 10 % of the experimental 
solvation energy values .
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Results from theory agree quite
Well with experiment. Typically
Error is in region of 2=6%. This is a
good result given nature of assumptions
made (solvent is dielectric continuum).

What are the advantages of the Bontha-
Pintauro model ? The model contains no
adjustable parameters , and specifically
considers the effect of dielectric saturation in
the vicinity of the solvated ion . Agreement
between theory prediction and experimental
measurements is quite good, typically within 10
%. The Bontha-Pintauro approach is the most
recent elaboration on the original Born model
developed over 70 years ago , and may be used
as a convenient computational protocol to
evaluate Gibbs energies of solvation . However
the model is still firmly based on continuum
electrostatics and does not view the solvent as
a structured entity. This is a major
disadvantage , of this and all other Born type
continuum electrostatic approaches .



18

Some elaborations on the structural theory of solvation.

The theoretical models discussed
in the previous sections have
neglected the important fact that
water has a very well defined
structure , and that this structure
will have a very large part to play
in the solvation of a particular ion .
Details of water structure have
been presented in a previous
slide.We recall that in liquid water
there are networks of associated
(via hydrogen bonding interactions)
water molecules and also a certain
fraction of free unassociated
water molecules . We now proceed
on and ask the question : what
happens to the structure of water
when ions enter the solvent ?

At this point we introduce a centrally
important idea . We saw that water
molecules can be represented as dipoles
. Hence one might expect that the
intruding ions will interact with the
dipolar hosts . This interaction is not
gentle and causes major changes in the
structure of water . The spherically
symmetric electric field of the ion can
tear water dipoles out of the water
lattice and make them point or orient
with the appropriate charged end
towards the central ion .

Consequently, we arrive at a
picture of ion / dipole forces as
providing the principal basis of
ionic solvation . Because of the
operation of these ion/dipole
forces, we can imagine that a
certain number of water
molecules in the immediate
vicinity of the ion may be trapped
and orientated in the ionic field .
We arrive at a picture of ions
enveloped by a solvent sheath of
orientated, immobilised water
molecules. These immobilised
water molecules move with the
ion as it moves through the
solvent medium . The fate of
these immobilised solvent
molecules is tied up with that of
their partner ion . The ion and its
solvent sheath form a single
kinetic entity .
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What of the situation far away from
the ion ? At a large enough distance
from the ion, the electric field is
negligible and the solvent structure
will be unaffected by the ionic field .
Here the bulk water structure will
pertain . The solvent molecules will not
realise that the ion is there at all .

In the region between the solvation
sheath (where the electric field of the
ion determines the water orientation)
and the bulk water (where the
orientation of the water molecules is
uninfluenced by the electric field of the
ion) , the orientating influences of the
ion and the water network operate in a
microscopic tug of war . The former
tries to align the water dipoles parallel
to the spherically symmetric electric
field of the ion, whereas the water
network tries to make the water
molecules in this "in between" region
continue adopting the tetrahedral
bonding arrangement required for
membership of the network structure .
Hence caught between the two types of
influences, the water in this in between
region seeks to adopt a compromise
structure that is neither completely
orientated nor disorientated . In this
intermediate region the water structure
is said to be partially broken down as
outlined across.

Let us therefore summarise the
situation . We can describe three
regions near an ion : (i) the primary
or structure enhanced region
located next to the ion where the
water molecules are immobilised and
orientated by the electric field of
the ion, (ii) the secondary or
structure broken region where the
normal bulk structure of water is
broken down to various degrees , and
(iii) the bulk solvent region where
the water structure is unaffected by
the ion and the tetrahedrally bonded
network characteristic of bulk water
is exhibited . These regions are
illustrated in the previous slide.
It should be realised that these
regions differ in their degree of
sharpness . The primary solvation
sheath is reasonable well defined .

We have noted that both the central ion 
and its immobilised layer of water 
molecules form a single kinetic entity .  
The number of water molecules 
associated with the ion during its 
translational motion is termed the 
primary solvation (hydration) number nh
. We must distinguish the solvation 
number from the coordination number . 
The latter defines the number of 
solvent molecules in contact with the ion 
and is determined by geometric 
considerations . 

It is important to note that solvation 
numbers determined via different 
experimental techniques can give 
different answers due to the ambiguity 
inherent in the definition of the 
solvation number concept . In contrast, 
the in between region of secondary 
solvation is not as well defined . The 
regions of primary and secondary 
solvation define the region over which 
ion-solvent interactions operate .
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We now examine a simple structural model 
invoking ion-dipole interactions which may be 
used to provide a quantitative estimate of the 
energetics of ionic solvation .

We now present an account of a very 
simple  simple model of ionic solvation in 
which the structural details (although 
described at a very basic level) of the 
solvent is considered . This account will 
again dwell on the energetics of solvation 
and is based on the work reported many 
years ago by Bernal and Fowler , Eley and 
Evans , and Frank and Evans . 
Again we resort to a simple thought
experiment (which is a favourite
pursuit of physical electrochemists)
to help clarify the situation . The
essentials are presented in across and
follow the essential idea of Bernal and
Fowler.

We set the ball rolling by assuming  
that the primary solvation shell 
occupies a certain volume 
corresponding to n primary solvent 
molecules plus one more to make 
room for the bare ion . As a 
consequence of this supposition a 
volume corresponding to n+1 solvent 
molecules must be made available in 
the solvent for the immersion of a 
primary solvated ion . We therefore 
remove n+1 solvent molecules and 
transfer them to vacuum . A cavity
is left in the solvent as a result of 
this process . We let WCF denote the 
work done in cavity formation . We 
assume of course that the size of an  
un-solvated ion is the same as that of 
a solvent molecule . This  
approximation is reasonable for some 
ions .

Bernal Fowler Model
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Now before the n+1 solvent molecules
can orient around the ion in vacuum , the
water cluster must firstly dissociate
into n+1 separate molecules . We set WD
as representing the work done in this
dissociation process .

Ion-dipole bonds are then
made between n solvent molecules and
the target ion . A primary solvation
sheath is formed . We must determine
the work WID done in this process . In
short the interaction energy between an
ion and a dipole must be evaluated .

Then, the ion along with its 
primary solvation sheath is transferred 
from vacuum into the cavity within the 
solvent . The work done in this case is 
equal to the Born enthalpy of solvation 
WB . We note that the radius of the 
solvated ion R + 2rs is used in the Born 
expression previously derived .

The introduction of the primary
solvated ion into the cavity causes
disturbance of the solvent structure
in the immediate neighbourhood of
the solvated ion . As a result of this
a structure breaking work term WSB
must also be included .

Finally we may ask is the
story complete . Has everything
been accounted for ? The answer
must be no . What about our extra
solvent molecule left in vacuum ?
This species must finally be
transferred from vacuum into the
solvent . The work done in this
process is Wc , the work of
condensation .
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Now this thought experiment or 
thermodynamic cycle may appear to be 
quite complicated , but it really is the 
most simple one that we may devise . 
More complicated situations may be 
enumerated as done by Bockris and 
Saluja .  Implicit in our simple model is 
that the coordination number and 
solvation number are  the same .  Also 
we proposed that only the ion- dipole 
interaction need be considered . Both 
of these restrictive assumptions may 
be removed and more elaborate models 
developed . We have also not really 
considered the region of secondary 
solvation (the second "in between" 
layer in any specific detail , we merely 
specify some work WSB . Again this  
limitation may be  dispensed with in a 
more detailed analysis .
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We set the ball rolling by assuming  that the 
primary solvation shell occupies a certain 
volume corresponding to n primary solvent 
molecules plus  one more to make room for 
the bare ion . As a consequence of this 
supposition a volume corresponding to n+1 
solvent molecules must be made available in 
the solvent for the immersion of a primary 
solvated ion . We therefore remove n+1 
solvent molecules and transfer them to 
vacuum . A cavity  is left in the solvent as a 
result of this process . We let WCF denote 
the work done in cavity formation . 
We assume of course that the size of an  un-
solvated ion is the same as that of a solvent 
molecule . This  approximation is reasonable 
for some ions .

We can calculate the enthalpy of
solvation by adding together all of the
component work terms enumerated
previously .
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Here we have differentiated between the
electrostatic terms WID and WB and the
other work terms which have all been
lumped together into a composite work
term W . We now must evaluate all of
these work terms . The electrostatic work
terms WB and WID are readily evaluated .
The former quantity is obtained directly
from the Born theory.
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Here R denotes the unsolvated ionic radius and
rs denotes the radius of a water molecule .
Hence the quantity R + 2rs represents the
radius of a primary solvated ion . In deriving
this equation we again consider a Born type
transfer process but in this case we are moving
a primary solvated ion from vacuum into a cavity
within the solvent . We also use the bulk
dielectric constant of water in this expression
since we assume for the sake of simplicity that
the water structure outside the cavity is
normal and undisturbed .

In the R denotes the unsolvated
ionic radius and rs denotes the
radius of a water molecule . Hence
the quantity R + 2rs represents the
radius of a primary solvated ion .
In deriving this expression we
again consider a Born type
transfer process but in this case
we are moving a primary solvated
ion from vacuum into a cavity
within the solvent . We also use
the bulk dielectric constant of
water in this expression since we
assume for the sake of simplicity
that the water structure outside
the cavity is normal and
undisturbed .

The other electrostatic term is 
concerned with the interaction between 
the ion and the n free solvent dipoles in 
vacuum to form the primary solvated ion 
in vacuum . This is a standard problem in 
electrostatics and the mathematical 
details are not difficult to follow . Our 
problem is to calculate the interaction 
energy between a dipole and an ion 
placed at a distance r from the dipole 
center We assume that the dipole is 
orientated at an angle  to the line 
joining the centers of the ion and the 
dipole . We assume that the dipole is of 
length 2L . 

r


2L

Ion-dipole work.
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Now the ion-dipole interaction energy
UID is equal to the product of the
ionic charge qi = zie and the
electrostatic potential y(r) due to the
dipole . We recall from basic
electrostatic theory that the
potential due to an assembly of
charges is given by the sum of the
potentials due to each charge
constituting the assembly . Since the
dipole consists of the charges + q and
- q which are located at distances r1
and r2 from the point P defining the
position of the ion (see figure on
previous slide) , hence the total
electrostatic potential is given by :
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From basic geometrical considerations
we note that :
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Also we note that 
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Inverting this expression we obtain 
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We now make the point dipole approximation
and assume that P is located very far away
from the dipole and so r >> 2L . We can then
expand the rhs of eqn.4 using the Binomial
theorem to obtain :
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If we now neglect terms of order higher than
L2/r2 we obtain :
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In a similar manner we may show that :
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If we substitute eqn.6 and eqn.7 into eqn.1 we
obtain the following expression for the
electrostatic potential at the ion due to the
presence of the dipole :
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In the latter p = 2Lq denotes the dipole
moment . We can replace the distance r
by the sum R + rs to obtain the
following expression.
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We note from eqn.9 that the potential 
due to a dipole falls off approximately 
as the square of the distance r, whereas 
the potential due to a single point charge 
varies only as r-1 . This observation is 
readily explained . The difference in the 
behavior of the potential at large 
distances arises from the fact that the 
charges in a dipole appear close together 
for an observer located  at some 
distance away from the dipole and their 
fields cancel more and more as the 
distance r increases . We also note that 
the electrostatic potential also depends 
on the orientation angle  . 

It is clear for maximum interaction we set  = 
 and so cos  = 1 and eqn. 9 reduces to 
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We assume that n solvent molecules 
surround the ion in the primary hydration 
sheath . Hence per mole of ions the ion-
dipole work term is given by :
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This result may also be obtained in a
mathematically more rigorous manner
which we will not describe here but
involves Legendre Polynomials which are
only suitable for real black belt
electrochemists at the Graduate level!!!

We can also look at more complex 
electrostatic interactions. For 
example we can look at the ion/water
Quadrupole interaction. 
The latter may be calculated using the 
methods of electrostatics and the 
following expression may be derived.
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In latter expression   represents the
Dipole moment and p is the quadrupole
moment and n is the coordination 
number.
For water. 
The positive sign in second term on
rhs corresponds to cations and
the negative sign to anions. Hence in a 
more 
Sophisticated nalaysis we should 
replace
WID by WIQ.
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We also may have to account for 
ion/induced 
dipole interaction work WIID .
This term arises from the fact that when
The water molecule is in contact with the 
ion, the electric field of the ion tends to
distort the charge distribution (quantified 
in terms of deformation polarizability  in 
the water molecule and so induces a dipole
moment on the water molecule.
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Ion-induced Dipole work


